EXISTENCE OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL SOBOLEV-HARDY EXPONENTS

BY

Dongsheng Kang*

Department of Mathematics, South-Central University For Nationalities
Wuhan 430074, P.R. China
e-mail: dongshengkang@yahoo.com.cn

AND

Shuangjie Peng

Department of Mathematics, Xiaogan University Xiaogan 432100, P.R. China and

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences
Wuhan 430071, P.R. China
e-mail: sjpeng@amss.ac.cn

ABSTRACT

Let $\Omega \subset \mathbb{R}^N$ be a smooth bounded domain such that $0 \in \Omega$, $N \geq 3$, $0 \leq s < 2$, $2^*(s) = 2(N-s)/(N-2)$. We prove the existence of nontrival solutions for the singular critical problem

$$-\Delta u - \mu \frac{u}{|x|^2} = \frac{|u|^{2^\bullet(s)-2}}{|x|^s} u + \lambda u$$

with Dirichlet boundary condition on Ω for suitable positive parameters λ and μ .

^{*} Corresponding author. This work is supported partly by the National Natural Science Foundation of China (No. 10171036) and the Natural Science Foundation of South-Central University For Nationalities (No. YZZ03001). The authors sincerely thank Prof. Daomin Cao (AMSS, Chinese Academy of Sciences) for helpful discussions and suggestions.

1. Introduction and main results

In recent years, people have paid much attention to the existence of nontrivial solutions for the singular problem

(1.1)
$$\begin{cases} -\Delta u - \mu \frac{u}{|x|^2} = |u|^{2^* - 2} u + \lambda u, & x \in \Omega, \\ u = 0, & x \in \partial\Omega, \end{cases}$$

where Ω is a smooth bounded domain in $\mathbb{R}^N(N \geq 3), 0 \in \Omega, \lambda > 0, 0 \leq \mu < \bar{\mu} \triangleq ((N-2)/2)^2, 2^* \triangleq 2N/(N-2)$ is the critical Sobolev exponent. As a consequence of Hardy's inequality (see [8]), the linear elliptic operator $L \triangleq (-\Delta - \mu/|x|^2)$ is positive and has discrete spectrum σ_{μ} in $H_0^1(\Omega)$ if $0 \leq \mu < \bar{\mu}$. Let λ_1 be the first eigenvalue of the operator L in $H_0^1(\Omega)$ and set

$$(1.2) J_{2^*}(u) \triangleq \frac{1}{2} \int_{\Omega} \left(|\nabla u|^2 - \mu \frac{u^2}{|x|^2} - \lambda u^2 \right) - \frac{1}{2^*} \int_{\Omega} |u|^{2^*}, \quad \forall u \in H_0^1(\Omega).$$

Due to the invariance of H_0^1 -norm, L^{2^*} -norm and $\int_{\Omega} u^2/|x|^2$ with respect to rescaling $u \mapsto u_{\varepsilon} = \varepsilon^{(N-2)/2} u(\varepsilon(\cdot))$ and the existence of the non-trivial entire solution of the limiting problem (see [3], [6], [7] and [10])

(1.3)
$$\begin{cases} -\Delta u - \mu \frac{u}{|x|^2} = |u|^{2^* - 2} u, & x \in \mathbb{R}^N, \\ u \to 0, & |x| \to \infty, \end{cases}$$

 J_{2^*} fails to satisfy the classical Palais–Smale (PS in short) condition in $H^1_0(\Omega)$. However, a local PS condition can be established. Indeed, let $|u|_p^p = \int_{\Omega} |u|^p$ for $p \in (1, \infty)$ and

(1.4)
$$A \triangleq \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \frac{\int_{\Omega} (|\nabla u|^2 - \mu \frac{u^2}{|x|^2})}{(\int_{\Omega} |u|^{2^*})^{2/2^*}}.$$

Suppose $\{u_n\} \subset H_0^1(\Omega)$ is a sequence such that $J_{2^*}(u_n) \leq c < \frac{1}{N}A^{N/2}, J'_{2^*}(u_n) \to 0$ in $H^{-1}(\Omega) = (H_0^1(\Omega))^*$. Then $\{u_n\}$ contains a strongly convergent subsequence; see also [12], [13], [14] and [15]. Using this local PS condition, Jannelli proved in [10] that problem (1.1) has at least one positive solution $u_0 \in H_0^1(\Omega)$ if either (1) $\mu \in (0, \bar{\mu} - 1)$ and $\lambda \in (0, \lambda_1)$ or (2) $\mu \in (\bar{\mu} - 1, \bar{\mu})$ and $\lambda \in (\lambda_*, \lambda_1)$ holds, where λ_* is a positive constant depending on μ . Also, by the compactness analysis argument, Ferrero and Gazzola in [7] investigated the existence of nontrival solutions to (1.1) for a large range of λ ; Ghoussoub and Yuan in [9] and Ekeland and Ghoussoub in [6] studied a more general case. Recently, Cao and Peng in [2] proved the existence of sign-changing solutions for problem (1.1)

by applying the min-max principles. Catrina and Wang in [3] and Terracini in [18] proved that for $\beta \triangleq \sqrt{\overline{\mu} - \mu}$, $\varepsilon > 0$ and a suitable C > 0, the functions

$$Y_{\varepsilon} = \frac{C\varepsilon^{(N-2)/2}}{|x|^{\sqrt{\overline{\mu}}-\beta}(\varepsilon^2 + |x|^{4\beta/(N-2)})^{\sqrt{\overline{\mu}}}}$$

satisfy equation (1.3); moreover, Y_{ε} achieve A on \mathbb{R}^{N} .

Now we consider the following problem,

(1.5)
$$\begin{cases} -\Delta u - \mu \frac{u}{|x|^2} = \frac{|u|^{2^*(s)-2}}{|x|^s} u + \lambda u, & x \in \Omega, \\ u = 0, & x \in \partial\Omega, \end{cases}$$

where Ω is a smooth bounded domain in \mathbb{R}^N $(N \ge 3)$, $0 \in \Omega$, $0 \le \mu < \overline{\mu}$, $\lambda > 0$, $0 \le s < 2$, $2^*(s) \triangleq 2(N-s)/(N-2)$ is the critical Sobolev–Hardy exponent; note that $2^*(0) = 2^*$ is the critical Sobolev exponent and as s = 0, (1.5) becomes (1.1).

Thus problem (1.5) is in fact the continuation of problem (1.1). In the case of problem (1.5), we need to consider not only the effect of parameter λ and μ , but also that of parameter s. Problem (1.5) is more complicated to deal with than problem (1.1).

A natural interesting question is whether the results about the solutions of (1.1) remain true for (1.5) as 0 < s < 2, with the critical Sobolev-Hardy growth?

Recently, Kang and Peng in [11] proved that (1.5) has positive solutions and sign-changing solutions for suitable $\mu \in [0, \bar{\mu}), \lambda \in (0, \lambda_1)$ and $s \in [0, 2)$. Moreover, they found that for $\varepsilon > 0$ and $\beta = \sqrt{\bar{\mu} - \mu}$, the functions

$$u_{\varepsilon}^{*}(x) = \left(\frac{2\varepsilon^{2}\beta^{2}(N-s)}{\sqrt{\bar{\mu}}}\right)^{\sqrt{\bar{\mu}}/(2-s)} / \left(|x|^{\sqrt{\bar{\mu}}-\beta} \left(\varepsilon^{2} + |x|^{(2-s)\beta/\sqrt{\bar{\mu}}}\right)^{(N-2)/(2-s)}\right)$$

solve the equation

$$-\Delta u - \mu \frac{u}{|x|^2} = \frac{|u|^{2^*(s)-2}}{|x|^s} u \quad \text{in } \mathbb{R}^N \setminus \{0\}$$

and satisfy

(1.7)
$$\int_{\mathbb{R}^N} \left(|\nabla u_{\varepsilon}^*|^2 - \mu \frac{|u_{\varepsilon}^*|^2}{|x|^2} \right) = \int_{\mathbb{R}^N} \frac{|u_{\varepsilon}^*|^{2^*(s)}}{|x|^s} = A_s^{(N-s)/(2-s)},$$

where A_s is the best constant defined as

(1.8)
$$A_s \triangleq \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \frac{\int_{\Omega} (|\nabla u|^2 - \mu \frac{u^2}{|x|^2})}{(\int_{\Omega} \frac{u^{2^*(s)}}{|x|^s})^{2/2^*(s)}};$$

 A_s is independent of Ω and is achieved by u_{ε}^* only on \mathbb{R}^N . Furthermore, $A_0 = A$ is the best constant defined in (1.4).

By Pohozaev's identity (see [8]), if Ω is a star-shaped domain in \mathbb{R}^N , then problem (1.5) has no nontrivial solutions for $\lambda \leq 0$. It is easy to verify that as $\lambda \geq \lambda_1$, every solution of (1.5) must change sign. So it will be meaningful to study the existence of nontrival solutions for problem (1.5) as $s \in [0, 2)$ and $\lambda \in (0, +\infty)$, especially as $\lambda \in [\lambda_1, +\infty)$. In this paper, we obtain the following existence results.

THEOREM 1.1: Suppose $N \geq 4, \mu \in [0, \bar{\mu} - 1], s \in [0, 2)$ and $\lambda \in (\lambda_k, \lambda_{k+1})$ with $\lambda_k, \lambda_{k+1} \in \sigma_{\mu}$. Then problem (1.5) has at least a pair of sign-changing solutions $\pm u(x)$ in $H_0^1(\Omega)$.

THEOREM 1.2: Suppose $N \ge 4$, $\mu \in (\bar{\mu}-1, \bar{\mu})$, $s \in [0, 2)$ and there exists $\lambda_k \in \sigma_{\mu}$ such that $\lambda \in (\lambda^*, \lambda_k) \cap (0, +\infty)$, where

$$\lambda^* = \lambda_k - \left(A_s \int_{\Omega} |x|^{2s/(2^*(s)-2)} \right)^{-(2-s)/(N-s)}$$

Then problem (1.5) has ν_k pairs of nontrival solutions, where ν_k denotes the multiplicity of λ_k .

Theorem 1.3: Suppose $N \geq 5$, $\Omega = B_1(0)$ is the unit ball, $0 \leq \mu < \bar{\mu} - ((N+2)/N)^2$ and $\lambda = \lambda_1$. Then problem (1.5) has at least a pair of sign-changing solutions $\pm u(x)$ in $H_0^1(\Omega)$ with energy level in the range of $(0, \frac{2-s}{2(N-s)}A_s^{(N-s)/(2-s)})$.

It should be mentioned that when s = 0, our above results are the same as those in [7]. When 0 < s < 2, our results are new.

This paper is organized as follows. In Section 2, we establish some asymptotic estimates; in Section 3, we describe the variational procedure; in Section 4, we give the proofs of our theorems. This idea is essentially introduced in [7].

2. Some technical asymptotic estimates

We first define the equivalent norm in $H_0^1(\Omega)$ for $0 \le \mu < \bar{\mu}$:

$$||u|| \triangleq \left(\int_{\Omega} \left(|\nabla u|^2 - \mu \frac{u^2}{|x|^2} \right) \right)^{\frac{1}{2}}, \quad \forall u \in H_0^1(\Omega).$$

By Hardy's inequality, this norm is equivalent to the usual norm in $H_0^1(\Omega)$. We also denote the norm of $L^p(\Omega)$ space as $|u|_p$ and various positive constants as

C. Define

$$J(u) \triangleq \frac{1}{2} \int_{\Omega} \left(|\nabla u|^2 - \mu \frac{u^2}{|x|^2} - \lambda u^2 \right) - \frac{1}{2^*(s)} \int_{\Omega} \frac{|u|^{2^*(s)}}{|x|^s}, \quad \forall u \in H_0^1(\Omega);$$

then $J \in C^1(H_0^1(\Omega), \mathbb{R})$ and the critical points of functional J correspond to the solutions of (1.5).

Fix $k \in \mathbb{N}$, and for all $i \in \mathbb{N}$ denote by e_i an L^2 normalized eigenfunction relative to $\lambda_i \in \sigma_\mu$; let H^- denote the space spanned by the eigenfunctions corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_k$ and $H^+ \triangleq (H^-)^{\perp}, P_k \colon H^1_0(\Omega) \mapsto H^-$ denote the orthogonal projection. Take always $m \in \mathbb{N}$ large enough so that $B_{1/m} \subset \Omega$, where $B_{1/m}$ denotes the ball of radius 1/m with center at 0. Define

$$\zeta_m(x) \triangleq \begin{cases} 0, & x \in B_{1/m}, \\ m|x| - 1, & x \in A_m = B_{2/m} \setminus B_{1/m}, \\ 1, & x \in \Omega \setminus B_{2/m}, \end{cases}$$

 $e_i^m \triangleq \zeta_m e_i, H_m^- \triangleq \operatorname{span}\{e_i^m; i=1,\ldots,k\}, \gamma \triangleq \sqrt{\overline{\mu}} + \beta \text{ and } \gamma' \triangleq \sqrt{\overline{\mu}} - \beta.$

LEMMA 2.1 ([7]): As $m \to \infty$, we have

$$e_i^m \to e_i$$
 in $H_0^1(\Omega)$, $\forall i \in \mathbb{N}$.

Furthermore,

(i) for $H_m^- = \mathrm{span}\{e_i^m; i=1,\dots,k\}$ and $\Lambda = \{u \in H_m^-; |u|_2 = 1\}$, we have $\max_{i=1} ||u||^2 \le \lambda_k + o(1);$

(ii) for
$$H_m^- = \text{span}\{e_1^m\}$$
, $\Lambda = \{u \in H_m^-; |u|_2 = 1\}$ and $\Omega = B_1(0)$, we have
$$\max_{u \in \Lambda} ||u||^2 \le \lambda_1 + Cm^{-2\beta}.$$

Consider the function $u_{\varepsilon}^*(x)$ in (1.6); since u_{ε}^* is a radial function we can view it also as a function on \mathbb{R}^+ . For all $m \in \mathbb{N}$ and $\varepsilon > 0$, define the shifted function

$$u_{\varepsilon}^m(x) \triangleq \begin{cases} u_{\varepsilon}^*(x) - u_{\varepsilon}^*(1/m), & x \in B_{1/m} \setminus \{0\}, \\ 0, & x \in \Omega \setminus B_{1/m}; \end{cases}$$

then we have the following estimates.

LEMMA 2.2: There exist C_1, C_2 and K > 0, such that if $\varepsilon^{2(N-2)/(2-s)} m^{2\beta} < K$, then

(2.1)
$$||u_{\varepsilon}^{m}||^{2} \leq A_{s}^{(N-s)/(2-s)} + C_{1} \varepsilon^{2(N-2)/(2-s)} m^{2\beta},$$

(2.2)
$$\int_{\Omega} \frac{|u_{\varepsilon}^{m}|^{2^{*}(s)}}{|x|^{s}} \ge A_{s}^{(N-s)/(2-s)} - C_{2} \varepsilon^{2(N-s)/(2-s)} m^{2^{*}(s)\beta}.$$

Proof: Set

$$C_{\varepsilon} \triangleq \left(\frac{2\varepsilon^2 \beta^2 (N-s)}{\sqrt{\overline{\mu}}}\right)^{\sqrt{\overline{\mu}}/(2-s)}.$$

By the definition of $u_{\varepsilon}^{m}(x)$ we have

$$(2.3) \qquad \int_{\Omega} |\nabla u_{\varepsilon}^{m}|^{2} = \int_{\mathbb{R}^{N}} |\nabla u_{\varepsilon}^{*}|^{2} - \int_{\mathbb{R}^{N} \backslash B_{1/m}} |\nabla u_{\varepsilon}^{*}|^{2} \leq \int_{\mathbb{R}^{N}} |\nabla u_{\varepsilon}^{*}|^{2},$$

$$\begin{split} &\int_{\Omega} \frac{|u_{\varepsilon}^{m}|^{2}}{|x|^{2}} \\ &= \int_{B_{1/m}} \frac{|u_{\varepsilon}^{*}|^{2}}{|x|^{2}} + \int_{B_{1/m}} \frac{C_{\varepsilon}^{2}}{(1/m)^{2\gamma'} [\varepsilon^{2} + (1/m)^{(2-s)\beta/\sqrt{\mu}}]^{2(N-2)/(2-s)}} \frac{1}{|x|^{2}} \\ &- 2 \int_{B_{1/m}} \frac{C_{\varepsilon} u_{\varepsilon}^{*}}{(1/m)^{\gamma'} [\varepsilon^{2} + (1/m)^{(2-s)\beta/\sqrt{\mu}}]^{(N-2)/(2-s)}} \frac{1}{|x|^{2}} \\ &\geq \int_{\mathbb{R}^{N}} \frac{|u_{\varepsilon}^{*}|^{2}}{|x|^{2}} - C \int_{1/m}^{\infty} \frac{\varepsilon^{4\sqrt{\mu}/(2-s)}}{r^{2\gamma'} (\varepsilon^{2} + r^{(2-s)\beta/\sqrt{\mu}})^{2(N-2)/(2-s)}} \frac{1}{r^{2}} r^{N-1} dr \\ &- C \int_{0}^{1/m} \frac{\varepsilon^{4\sqrt{\mu}/(2-s)} r^{N-3} dr}{r^{\gamma'} (\varepsilon^{2} + r^{(2-s)\beta/\sqrt{\mu}})^{\frac{(N-2)}{(2-s)}} (1/m)^{\gamma'} [\varepsilon^{2} + (1/m)^{(2-s)\beta/\sqrt{\mu}}]^{\frac{(N-2)}{(2-s)}}}. \end{split}$$

From

$$\int_{1/m}^{\infty} \frac{\varepsilon^{4\sqrt{\overline{\mu}}/(2-s)} r^{N-3-2\gamma'} dr}{(\varepsilon^2 + r^{(2-s)\beta/\sqrt{\overline{\mu}})^{2(N-2)/(2-s)}} \leq C \varepsilon^{4\sqrt{\overline{\mu}}/(2-s)} m^{2\beta}$$

and

$$\begin{split} \int_{0}^{1/m} \frac{\varepsilon^{4\sqrt{\overline{\mu}}/(2-s)} r^{N-3-\gamma'} dr}{(\varepsilon^{2} + r^{(2-s)\beta/\sqrt{\overline{\mu}}})^{(N-2)/(2-s)} (1/m)^{\gamma'} [\varepsilon^{2} + (1/m)^{(2-s)\beta/\sqrt{\overline{\mu}}}]^{(N-2)/(2-s)}} \\ & \leq C \varepsilon^{4\sqrt{\overline{\mu}}/(2-s)} m^{2\beta}, \end{split}$$

we obtain

$$\int_{\Omega} \frac{|u_{\varepsilon}^m|^2}{|x|^2} \geq \int_{\mathbb{R}^N} \frac{|u_{\varepsilon}^*|^2}{|x|^2} - C \varepsilon^{4\sqrt{\overline{\mu}}/(2-s)} m^{2\beta}.$$

Combining (2.3) and (1.7) we have

$$\begin{split} &||u_{\varepsilon}^{m}||^{2} = \int_{\Omega} |\nabla u_{\varepsilon}^{m}|^{2} - \mu \int_{\Omega} \frac{|u_{\varepsilon}^{m}|^{2}}{|x|^{2}} \\ &\leq \int_{\mathbb{R}^{N}} \left(|\nabla u_{\varepsilon}^{*}|^{2} - \mu \frac{|u_{\varepsilon}^{*}|^{2}}{|x|^{2}} \right) + C\varepsilon^{4\sqrt{\overline{\mu}}/(2-s)} m^{2\beta} \\ &= A_{s}^{(N-s)/(2-s)} + C\varepsilon^{4\sqrt{\overline{\mu}}/(2-s)} m^{2\beta}, \end{split}$$

and (2.1) follows. In order to prove (2.2), noting that

$$\begin{split} &\int_{\Omega} \frac{|u_{\varepsilon}^{m}|^{2^{*}(s)}}{|x|^{s}} \\ &= \int_{B_{1/m}} \frac{|u_{\varepsilon}^{m}|^{2^{*}(s)}}{|x|^{s}} \\ &\geq \int_{B_{1/m}} \frac{|u_{\varepsilon}^{*}|^{2^{*}(s)}}{|x|^{s}} \\ &- 2^{*}(s) \int_{B_{1/m}} \frac{|u_{\varepsilon}^{*}|^{2^{*}(s)-1}}{|x|^{s}} \frac{C_{\varepsilon}}{(1/m)^{\gamma'} [\varepsilon^{2} + (1/m)^{(2-s)\beta/\sqrt{\overline{\mu}}}]^{(N-2)/(2-s)}} \\ &= \int_{\mathbb{R}^{N}} \frac{|u_{\varepsilon}^{*}|^{2^{*}(s)}}{|x|^{s}} - \int_{\mathbb{R}^{N} \setminus B_{1/m}} \frac{|u_{\varepsilon}^{*}|^{2^{*}(s)}}{|x|^{s}} \\ &- 2^{*}(s) \int_{B_{1/m}} \frac{|u_{\varepsilon}^{*}|^{2^{*}(s)-1}}{|x|^{s}} \frac{C_{\varepsilon}}{(1/m)^{\gamma'} [\varepsilon^{2} + (1/m)^{(2-s)\beta/\sqrt{\overline{\mu}}}]^{(N-2)/(2-s)}}, \\ &\int_{\mathbb{R}^{N} \setminus B_{1/m}} \frac{|u_{\varepsilon}^{*}|^{2^{*}(s)}}{|x|^{s}} = \int_{1/m}^{\infty} \frac{C_{\varepsilon}^{2^{*}(s)} r^{N-1-s} dr}{r^{2^{*}(s)\gamma'} (\varepsilon^{2} + r^{(2-s)\beta/\sqrt{\overline{\mu}}})^{\frac{N-2}{2-s}2^{*}(s)}} \\ &\leq C \varepsilon^{2(N-s)/(2-s)} m^{2^{*}(s)\beta} \end{split}$$

and

$$\begin{split} \int_{B_{1/m}} \frac{|u_{\varepsilon}^{*}|^{2^{*}(s)-1}}{|x|^{s}} \frac{C_{\varepsilon}}{(1/m)^{\gamma'} [\varepsilon^{2} + (1/m)^{(2-s)\beta/\sqrt{\mu}}]^{(N-2)/(2-s)}} \\ & \leq C \varepsilon^{2(N-s)/(2-s)} m^{2^{*}(s)\beta}, \end{split}$$

by (1.7) we have

$$\int_{\Omega} \frac{|u_{\varepsilon}^{m}|^{2^{*}(s)}}{|x|^{s}} \ge \int_{\mathbb{R}^{N}} \frac{|u_{\varepsilon}^{*}|^{2^{*}(s)}}{|x|^{s}} - C\varepsilon^{2(N-s)/(2-s)} m^{2^{*}(s)\beta}$$
$$= A_{s}^{(N-s)/(2-s)} - C\varepsilon^{2(N-s)/(2-s)} m^{2^{*}(s)\beta},$$

and (2.2) follows.

3. The variational characterization

The variational characterization is based on a linking argument. We recall that a sequence $\{u_m\} \subset H_0^1(\Omega)$ is called a PS sequence for J at level c if $J(u_m) \to c$ and $J'(u_m) \to 0$ in $H^{-1}(\Omega)$.

LEMMA 3.1: Suppose $\{u_m\} \subset H_0^1(\Omega)$ is a PS sequence for J. Then there exists $u \in H_0^1(\Omega)$ such that $u_m \rightharpoonup u$ weakly, up to a subsequence, and J'(u) = 0. Moreover, if $J(u_m) \to c$ with $c \in (0, \frac{2-s}{2(N-s)}A_s^{(N-s)/(2-s)})$, then u is a nontrival solution of (1.5).

Proof: The proof is standard and we only sketch it. It's easy to show that $\{u_m\}$ is bounded in $H_0^1(\Omega)$ and there exists u such that $u_m \rightharpoonup u$, up to a subsequence. Furthermore, J'(u) = 0 by the weak continuity of J'.

Assume $c \in (0, \frac{2-s}{2(N-s)}A_s^{(N-s)/(2-s)})$ and, by contradiction, $u \equiv 0$. As the term u_m^2 is subcritical, from $\langle J'(u_m), u_m \rangle = o(1)$ we get

(3.1)
$$||u_m||^2 - \int_{\Omega} \frac{|u_m|^{2^*(s)}}{|x|^s} = o(1).$$

By the definition of A_s we have

$$||u_m||^2 \ge A_s \left(\int_{\Omega} \frac{|u_m|^{2^*(s)}}{|x|^s} \right)^{2/2^*(s)}$$

and then

$$||u_m||^2 (1 - A_s^{-2^*(s)/2} ||u_m||^{2^*(s)-2}) \le o(1).$$

If $||u_m|| \to 0$, we contradict c > 0. Therefore

$$||u_m||^2 \ge A_s^{(N-s)/(2-s)} + o(1).$$

By (3.1) we get

$$J(u_m) = \frac{1}{2} ||u_m||^2 - \frac{1}{2^*(s)} \int_{\Omega} \frac{|u_m|^{2^*(s)}}{|x|^s} + o(1)$$
$$= \frac{2-s}{2(N-s)} ||u_m||^2 + o(1)$$
$$\geq \frac{2-s}{2(N-s)} A_s^{(N-s)/(2-s)} + o(1),$$

which contradicts

$$c < \frac{2-s}{2(N-s)} A_s^{(N-s)/(2-s)}.$$

Thus $u \not\equiv 0$ and u is a nontrival solution of problem (1.5).

By Lemma 3.1, in order to prove Theorems 1.1 – 1.3, it suffices to build a PS sequence for J at a level strictly between 0 and $\frac{2-s}{2(N-s)}A_s^{(N-s)/(2-s)}$. We deal with the case where the functional J has a linking geometry.

LEMMA 3.2: Assume that $\lambda \in (\lambda_k, \lambda_{k+1})$ for some $\lambda_k, \lambda_{k+1} \in \sigma_\mu$, let $Q_m^{\varepsilon} \triangleq [(\bar{B}_R \cap H_m^-) \oplus [0, R]\{u_{\varepsilon}^m\}]$ and $\Gamma \triangleq \{h \in C(Q_m^{\varepsilon}, H_0^1(\Omega)); h(v) = v, \forall v \in \partial Q_m^{\varepsilon}\}$. Then J admits a PS sequence at level

$$c = \inf_{h \in \Gamma} \max_{v \in Q_m^{\varepsilon}} J(h(v)).$$

Proof: By the Sobolev-Hardy inequality (see [9]) and our equivalent norm in $H_0^1(\Omega)$, the proof is similar to that of Lemma 4 in [7]. The main components are to prove the following claims:

CLAIM 1: There exist $\alpha, \rho > 0$ such that

$$J(v) \ge \alpha, \quad \forall v \in \{u \in H^+; ||u|| = \rho\}.$$

CLAIM 2: There exists $R > \rho$, such that $\max_{v \in \partial Q_m^{\epsilon}} J(v) \leq \omega_m$ with $\omega_m \to 0$ as $m \to \infty$.

By Claim 1 and Claim 2, J satisfies all the assumptions of the linking theorem except for the PS condition. Then by standard methods we obtain the desired results.

LEMMA 3.3: Suppose $\lambda_k, \lambda_{k+1} \in \sigma_{\mu}, \lambda_k < \lambda < \lambda_{k+1}, 0 \le \mu \le \bar{\mu} - 1$ and ε small enough. We have

$$\max_{t>0} J(tu_{\varepsilon}^m) < \frac{2-s}{2(N-s)} A_s^{(N-s)/(2-s)}.$$

Proof: By contradiction, assume that for any $\varepsilon > 0$, there exists $t_{\varepsilon} > 0$ such that

(3.2)
$$J(t_{\varepsilon}u_{\varepsilon}^{m}) \ge \frac{2-s}{2(N-s)}A_{s}^{(N-s)/(2-s)}.$$

Then we claim that $t_{\varepsilon} \to t_0 > 0$, up to a subsequence. Otherwise, assume that $t_{\varepsilon} \to +\infty$ up to a subsequence; then $J(t_{\varepsilon}u_{\varepsilon}^m) \to -\infty$ as $\varepsilon \to 0$, in contradiction with (3.2), thus $\{t_{\varepsilon}\}$ is bounded and there exists $t_0 \geq 0$ such that $t_{\varepsilon} \to t_0$ up to a subsequence. If $t_0 = 0$, by (2.1), (2.2) and the fact that $\lim_{\varepsilon \to 0} \int_{\Omega} |u_{\varepsilon}^m|^2 = 0$, we have

$$J(t_{\varepsilon}u_{\varepsilon}^{m}) = \frac{1}{2}t_{\varepsilon}^{2}||u_{\varepsilon}^{m}||^{2} - \frac{\lambda}{2}t_{\varepsilon}^{2}\int_{\Omega}|u_{\varepsilon}^{m}|^{2} - \frac{1}{2^{*}(s)}t_{\varepsilon}^{2^{*}(s)}\int_{\Omega}\frac{|u_{\varepsilon}^{m}|^{2^{*}(s)}}{|x|^{s}} = o(1),$$

which contradicts (3.2). So $t_{\varepsilon} \to t_0 > 0$ up to a subsequence if (3.2) holds. Setting

$$g(t) \triangleq \frac{1}{2} t^2 ||u_{\varepsilon}^m||^2 - \frac{1}{2^*(s)} t^{2^*(s)} \int_{\Omega} \frac{|u_{\varepsilon}^m|^{2^*(s)}}{|x|^s}, \quad t \in [0, +\infty),$$

g(t) attains its maximum at

$$t_{1} \triangleq \|u_{\varepsilon}^{m}\|^{2/(2^{*}(s)-2)} \left(\int_{\Omega} \frac{|u_{\varepsilon}^{m}|^{2^{*}(s)}}{|x|^{s}} \right)^{-1/(2^{*}(s)-2)},$$

$$g(t_{1}) = \left(\frac{1}{2} - \frac{1}{2^{*}(s)} \right) \|u_{\varepsilon}^{m}\|^{2 \cdot 2^{*}(s)/(2^{*}(s)-2)} \left(\int_{\Omega} \frac{|u_{\varepsilon}^{m}|^{2^{*}(s)}}{|x|^{s}} \right)^{-2/(2^{*}(s)-2)}$$

$$\leq \frac{2-s}{2(N-s)} A_{s}^{(N-s)/(2-s)} + C\varepsilon^{2(N-2)/(2-s)}$$

as $\varepsilon \to 0$. So we have

(3.3)

$$\frac{1}{2} ||t_{\varepsilon} u_{\varepsilon}^{m}||^{2} - \frac{1}{2^{*}(s)} \int_{\Omega} \frac{|t_{\varepsilon} u_{\varepsilon}^{m}|^{2^{*}(s)}}{|x|^{s}} \leq \frac{2-s}{2(N-s)} A_{s}^{(N-s)/(2-s)} + C\varepsilon^{2(N-2)/(2-s)}.$$

Next, we estimate the lower order term $\int_{\Omega} |t_{\varepsilon}u_{\varepsilon}^{m}|^{2}$ for $\lambda_{k} < \lambda < \lambda_{k+1}$ and $0 \le \mu \le \bar{\mu} - 1$. For $q = 2^{1/\gamma'}$, we may take ε small enough so that

$$\varepsilon^{2\sqrt{\overline{\mu}}/(2-s)\gamma} < 1/qm.$$

Hence there exists C > 0 such that

$$|x|^{\gamma'}(\varepsilon^2 + |x|^{(2-s)\beta/\sqrt{\mu}})^{(N-2)/(2-s)} < C|x|^{\gamma}, \quad \forall |x| \ge \varepsilon^{\sqrt{\mu}/\gamma}.$$

On the other hand,

$$u_{\varepsilon}^*(x) \ge u_{\varepsilon}^*(1/qm) > 2u_{\varepsilon}^*(1/m), \quad \forall x \in B_{1/qm}.$$

So we deduce

$$\begin{split} \int_{\Omega} |t_{\varepsilon} u_{\varepsilon}^{m}|^{2} &\geq C \int_{\varepsilon\sqrt{\mu}/\gamma}^{1/qm} \left(u_{\varepsilon}^{*}(r) - u_{\varepsilon}^{*} \left(\frac{1}{m} \right) \right)^{2} r^{N-1} dr \\ &\geq C \int_{\varepsilon\sqrt{\mu}/\gamma}^{1/qm} (u_{\varepsilon}^{*}(r))^{2} r^{N-1} dr \geq C \varepsilon^{2(N-2)/(2-s)} \int_{\varepsilon\sqrt{\mu}/\gamma}^{1/qm} r^{1-2\beta} dr. \end{split}$$

For $0 \le \mu < \bar{\mu} - 1$ and $\beta = \sqrt{\bar{\mu} - \mu} > 1$, we have

$$\int_{\mathcal{C}} |t_{\varepsilon} u_{\varepsilon}^{m}|^{2} \geq C \varepsilon^{2(N-2)/(2-s)} \varepsilon^{(N-2)(1-\beta)/\gamma} = C \varepsilon^{2(N-2)/(2-s)-(N-2)(\beta-1)/\gamma}.$$

For $\mu = \bar{\mu} - 1$ and $\beta = \sqrt{\bar{\mu} - \mu} = 1$, we get

$$\int_{\Omega} |t_{\varepsilon} u_{\varepsilon}^{m}|^{2} \geq C \varepsilon^{2(N-2)/(2-s)} |\ln \varepsilon|.$$

Thus as $0 \le \mu \le \tilde{\mu} - 1$, we obtain from (3.3)

$$J(t_{\varepsilon}u_{\varepsilon}^m) < \frac{2-s}{2(N-s)}A_s^{(N-s)/(2-s)},$$

which contradicts (3.2) and we can complete the proof.

4. Proof of theorems

In this section, we give the proofs of Theorems 1.1 - 1.3.

Proof of Theorem 1.1: From Lemma 3.2, since the identity $Id \in \Gamma$, we have

$$\inf_{h \in \Gamma} \max_{v \in Q_m^{\varepsilon}} J(h(v)) \le \max_{v \in Q_m^{\varepsilon}} J(v).$$

By Lemmas 3.1 and 3.2, Theorem 1.1 follows if we can prove that for some $\varepsilon > 0$ and $m \in \mathbb{N}$,

(4.1)
$$\sup_{v \in Q_{sv}^{\epsilon}} J(v) < \frac{2-s}{2(N-s)} A_s^{(N-s)/(2-s)}.$$

To the contrary we assume that

$$(4.2) \qquad \sup_{v \in Q_m^{\epsilon}} J(v) \ge \frac{2-s}{2(N-s)} A_s^{(N-s)/(2-s)}, \quad \forall m \in \mathbb{N}, \ \forall \epsilon > 0.$$

As the set $\{v \in Q_m^{\varepsilon}; J(v) \geq 0\}$ is compact, the supremum in (4.1) is attained. Therefore, for all $\varepsilon > 0$ there exists $w_{\varepsilon} \in H_m^-$ and $t_{\varepsilon} \geq 0$ such that for $v_{\varepsilon} \triangleq w_{\varepsilon} + t_{\varepsilon} u_{\varepsilon}^m$ we have

$$J(v_{\varepsilon}) = \sup_{v \in O^{\varepsilon}} J(v) \ge \frac{2-s}{2(N-s)} A_s^{(N-s)/(2-s)},$$

that is

$$(4.3) \ \frac{1}{2} ||v_{\varepsilon}||^2 - \frac{\lambda}{2} |v_{\varepsilon}|_2^2 - \frac{1}{2^*(s)} \int_{\Omega} \frac{|v_{\varepsilon}|^{2^*(s)}}{|x|^s} \ge \frac{2-s}{2(N-s)} A_s^{(N-s)/(2-s)}, \quad \forall \varepsilon > 0.$$

By Claim 2 in the proof of Lemma 3.2, we obtain that the sequences $\{t_{\varepsilon}\}\subset\mathbb{R}^+$ and $\{w_{\varepsilon}\}\subset H_m^-$ are bounded. Up to subsequences we may assume that

$$t_{\varepsilon} \to t_0 \ge 0, \quad w_{\varepsilon} \to w_0 \in H_m^-.$$

The convergence of $\{w_{\varepsilon}\}$ can be viewed in any norm topology since the space H_m^- is finite dimensional. As $w_{\varepsilon} \in H_m^-$, by Lemma 2.1.(i) and the fact that

 $\lambda \in (\lambda_k, \lambda_{k+1})$ we have

$$J(w_{\varepsilon}) = \frac{1}{2} ||w_{\varepsilon}||^{2} - \frac{\lambda}{2} |w_{\varepsilon}|_{2}^{2} - \frac{1}{2^{*}(s)} \int_{\Omega} \frac{|w_{\varepsilon}|^{2^{*}(s)}}{|x|^{s}}$$

$$\leq \frac{\lambda_{k} + o(1)}{2} |w_{\varepsilon}|_{2}^{2} - \frac{\lambda}{2} |w_{\varepsilon}|_{2}^{2} \leq 0$$

for m large enough (from now on we maintain m fixed). By using (4.3) and by arguing as in Lemma 3.3 we have $t_0 > 0$, up to a subsequence. By Lemma 3.3 we have, as $\varepsilon \to 0$,

$$J(v_{\varepsilon}) = J(w_{\varepsilon}) + J(t_{\varepsilon}u_{\varepsilon}^{m}) \le J(t_{\varepsilon}u_{\varepsilon}^{m}) < \frac{2-s}{2(N-s)}A_{s}^{(N-s)/(2-s)},$$

which contradicts (4.2) and thus (4.1) holds. By Lemma 3.1 and Lemma 3.2, we get that problem (1.5) has a nontrivial solution $u \in H_0^1(\Omega)$. Since $\lambda > \lambda_1$, u must change sign in Ω , which means that -u is also a sign-changing solution of problem (1.5).

Proof of Theorem 1.2: Set $\lambda_{+} \triangleq \min\{\lambda_{j} \in \sigma_{\mu}; \lambda < \lambda_{j}\}\$ and assume that

$$\lambda_{+} - \lambda < A_{s} \left(\int_{\Omega} |x|^{2s/(2^{*}(s)-2)} \right)^{-(2-s)/(N-s)}.$$

For any $j \in \mathbb{N}$, let $M(\lambda_j)$ be the eigenspace corresponding to λ_j , let $M^+ \triangleq \bigoplus_{\lambda_j \geq \lambda_+} M(\lambda_j)$ (closure in $H^1_0(\Omega)$) and $M^- \triangleq \bigoplus_{\lambda_j \leq \lambda_+} M(\lambda_j)$.

CLAIM 3: We have

$$\beta_{\lambda} \triangleq \sup_{u \in M^{-}} J(u) \leq \frac{2-s}{2(N-s)} (\lambda_{+} - \lambda)^{(N-s)/(2-s)} \int_{\Omega} |x|^{2s/(2^{*}(s)-2)} < \frac{2-s}{2(N-s)} A_{s}^{(N-s)/(2-s)};$$

furthermore, there exist $\rho_{\lambda} > 0$ and $\delta_{\lambda} \in (0, \beta_{\lambda})$ such that $J(u) \geq \delta_{\lambda}$ for any $u \in M^+$ with $||u|| = \rho_{\lambda}$.

Indeed, for any $u \in M^-$ we have $||u||^2 \le \lambda_+ |u|_2^2$ and by Hölder's inequality

we get

$$J(u) = \frac{1}{2} ||u||^2 - \frac{\lambda}{2} |u|_2^2 - \frac{1}{2^*(s)} \int_{\Omega} \frac{|u|^{2^*(s)}}{|x|^s}$$

$$\leq \frac{1}{2} (\lambda_+ - \lambda) |u|_2^2 - \frac{1}{2^*(s)} \int_{\Omega} \frac{|u|^{2^*(s)}}{|x|^s}$$

$$\leq \frac{1}{2} (\lambda_+ - \lambda) \left(\int_{\Omega} |x|^{2s/(2^*(s)-2)} \right)^{\frac{2^*(s)-2}{2^*(s)}} \left(\int_{\Omega} \frac{|u|^{2^*(s)}}{|x|^s} \right)^{2/2^*(s)}$$

$$- \frac{1}{2^*(s)} \int_{\Omega} \frac{|u|^{2^*(s)}}{|x|^s}.$$

Since

$$\max_{\rho \ge 0} \left[\frac{1}{2} (\lambda_{+} - \lambda) \left(\int_{\Omega} |x|^{2x/(2*(s)-2)} \right)^{(2^{*}(s)-2)/2^{*}(s)} \rho^{2} - \frac{1}{2^{*}(s)} \rho^{2^{*}(s)} \right] \\
= \frac{2-s}{2(N-s)} (\lambda_{+} - \lambda)^{(N-s)/(2-s)} \left(\int_{\Omega} |x|^{2s/(2^{*}(s)-2)} \right) \\
< \frac{2-s}{2(N-s)} A_{s}^{(N-s)/(2-s)},$$

we obtain

$$\beta_{\lambda} \leq \frac{2-s}{2(N-s)} (\lambda_{+} - \lambda)^{(N-s)/(2-s)} \left(\int_{\Omega} |x|^{2s/(2*(s)-2)} \right) < \frac{2-s}{2(N-s)} A_{s}^{(N-s)/(2-s)}.$$

Let $u \in M^+$. Utilizing the inequalities

$$|\lambda_{+}|u|_{2}^{2} \leq ||u||^{2} \quad \text{and} \quad A_{s} \left(\int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} \right)^{2/2^{*}(s)} \leq ||u||^{2},$$

we have

$$J(u) = \frac{1}{2} ||u||^2 - \frac{\lambda}{2} |u|_2^2 - \frac{1}{2^*(s)} \int_{\Omega} \frac{|u|^{2^*(s)}}{|x|^s} \ge \frac{\lambda_+ - \lambda}{2\lambda_+} ||u||^2 - \frac{||u||^{2^*(s)}}{2^*(s)A_s^{2^*(s)/2}}.$$

Since

$$\begin{split} \max_{\rho \geq 0} \left(\frac{\lambda_{+} - \lambda}{2\lambda_{+}} \rho^{2} - \frac{1}{2^{*}(s)A_{s}^{2^{*}(s)/2}} \rho^{2^{*}(s)} \right) \\ &= \frac{2 - s}{2(N - s)} \left(\frac{\lambda_{+} - \lambda}{\lambda_{+}} \right)^{(N - s)/(2 - s)} A_{s}^{(N - s)/(2 - s)} \triangleq \delta_{0}, \end{split}$$

the maximum is attained at the point

$$\rho_0 \triangleq \left(\frac{\lambda_+ - \lambda}{\lambda_+} A_s^{\frac{2^*(s)}{2}}\right)^{1/(2^*(s) - 2)}.$$

If we take $\rho_{\lambda} = \rho_0$ and $\delta_{\lambda} < \delta_0$, then we have $J(u) \geq \delta_{\lambda}$ for all $u \in M^+ \cap \partial B_{\rho_{\lambda}}$. Since $M^+ \cap M^- = M(\lambda_+)$, we have $M^+ \cap M^- \cap \partial B \rho_{\lambda} \neq \emptyset$ and any $u \in M^+ \cap M^- \cap \partial B \rho_{\lambda}$ satisfies $\delta_{\lambda} < J(u) \leq \sup_{u \in M^-} J(u) = \beta_{\lambda}$, which completes the proof of Claim 3.

By arguments similar to that of [7], we can get our desired results and complete the proof of Theorem 1.2.

Proof of Theorem 1.3: The proof of Theorem 1.3 follows the same lines as that of Theorem 1.1; however, some refinements of the estimates are required. To emphasize the dependence on m, we denote $v_{\varepsilon}^m, u_{\varepsilon}^m$ and w_{ε}^m instead of $v_{\varepsilon}, u_{\varepsilon}$ and w_{ε} . To prove (4.1), arguing by contradiction we assume that (4.2) holds, i.e., for all m large enough and all $\varepsilon > 0$, there exist $v_{\varepsilon}^m \in Q_m^{\varepsilon}$ and $t_{\varepsilon} \geq 0$ such that

$$(4.4) \qquad \frac{1}{2} \|v_{\varepsilon}^{m}\|^{2} - \frac{\lambda_{1}}{2} |v_{\varepsilon}^{m}|_{2}^{2} - \frac{1}{2^{*}(s)} \int_{\Omega} \frac{|v_{\varepsilon}^{m}|^{2^{*}(s)}}{|x|^{s}} \ge \frac{2-s}{2(N-s)} A_{s}^{(N-s)/(2-s)};$$

then the sequences $\{t_{\varepsilon}\}$ and $\{w_{\varepsilon}^m\}$ again satisfy

$$(4.5) t_{\varepsilon} \ge C > 0 \quad \text{and} \quad ||w_{\varepsilon}^{m}|| \le C.$$

In order to deal only with one parameter, set $\varepsilon = m^{-(N+2)(2-s)\beta/(2(N-2))}$. Then as $m \to \infty$, (2.1) and (2.2) become

(4.6)
$$||u_{\varepsilon}^{m}||^{2} \leq A_{\varepsilon}^{(N-s)/(2-s)} + C_{1}m^{-N\beta},$$

(4.7)
$$\int_{\Omega} \frac{|u_{\varepsilon}^{m}|^{2^{*}(s)}}{|x|^{s}} \ge A_{s}^{(N-s)/(2-s)} - C_{2}m^{-N(N-s)\beta/(N-2)}.$$

Note that $m^{-N(N-s)\beta/(N-2)}=o(m^{-N\beta})$ as $m\to\infty$. As in the proof of Lemma 3.3, there exist $C_3,C_4>0$ such that

$$\varepsilon^2 + |x|^{(2-s)\beta/\sqrt{\overline{\mu}}} \le C_3|x|^{(2-s)\beta/\sqrt{\overline{\mu}}}, \quad \forall |x| \ge C_4 \varepsilon^{2\sqrt{\overline{\mu}}/(2-s)\beta}.$$

Let $q=2^{1/\gamma'}$; then we have $u_{\varepsilon}^*(x) \geq u_{\varepsilon}^*(1/qm) > 2u_{\varepsilon}^*(1/m), \forall x \in B_{1/(qm)}$. Furthermore,

$$(4.8)$$

$$\int_{\Omega} |t_{\varepsilon} u_{\varepsilon}^{m}|^{2} \geq C \int_{C_{4} \varepsilon^{2} \sqrt{\overline{\mu}}/(2-s)\beta}^{1/qm} |u_{\varepsilon}^{*}(r)|^{2} r^{N-1} dr$$

$$\geq C \cdot C_{\varepsilon}^{2} \int_{C_{4} \varepsilon^{2} \sqrt{\overline{\mu}}/(2-s)\beta}^{1/qm} r^{1-2\beta} dr \geq C \varepsilon^{4\sqrt{\overline{\mu}}/(2-s)\beta} = C m^{-(N+2)}.$$

From now on we denote by v^m, u^m and w^m the functions $v_{\varepsilon}^m, u_{\varepsilon}^m$ and w_{ε}^m with the above choice of ε and with t_m the corresponding t_{ε} .

Claim 4: For $0 \le \mu < \bar{\mu} - ((N+2)/N)^2$, m large enough, we have

$$J(t_m u^m) \le \frac{2-s}{2(N-s)} A_s^{(N-s)/(2-s)} - Cm^{-(N+2)}.$$

Indeed, by (4.6) and (4.7) we have

$$\begin{split} J(t_{m}u^{m}) &= \frac{1}{2} ||t_{m}u^{m}||^{2} - \frac{\lambda_{1}}{2} |t_{m}u^{m}||_{2}^{2} - \frac{1}{2^{*}(s)} \int_{\Omega} \frac{|t_{m}u^{m}|^{2^{*}(s)}}{|x|^{s}} \\ &\leq \frac{1}{2} t_{m}^{2} (A_{s}^{(N-s)/(2-s)} + Cm^{-N\beta}) - Cm^{-(N+2)} \\ &- \frac{1}{2^{*}(s)} t_{m}^{2^{*}(s)} (A_{s}^{(N-s)/(2-s)} - Cm^{-\frac{N(N-s)\beta}{N-2}}) \\ &= A_{s}^{(N-s)/(2-s)} \left(\frac{t_{m}^{2}}{2} - \frac{t_{m}^{2^{*}(s)}}{2^{*}(s)} \right) \\ &+ Cm^{-N\beta} - Cm^{-(N+2)} + Cm^{-N(N-s)\beta/(N-2)} \\ &\leq \frac{2-s}{2(N-s)} A_{s}^{(N-s)/(2-s)} - Cm^{-(N+2)} \end{split}$$

for m large enough, where we have used the fact that

$$\max_{t \ge 0} \left(\frac{t^2}{2} - \frac{t^{2^*(s)}}{2^*(s)} \right) = \frac{2-s}{2(N-s)}$$

and

$$N+2 < N\beta < \frac{N(N-s)}{N-2}\beta, \quad \text{for } 0 \leq \mu < \bar{\mu} - \left(\frac{N+2}{N}\right)^2, \quad 0 \leq s < 2.$$

Thus Claim 4 holds.

On the other hand, by Lemma 2.1.(ii) and Hölder's inequality we have

$$J(w^{m}) = \frac{1}{2} ||w^{m}||^{2} - \frac{\lambda_{1}}{2} |w^{m}|_{2}^{2} - \frac{1}{2^{*}(s)} \int_{\Omega} \frac{|w^{m}|^{2^{*}(s)}}{|x|^{s}}$$

$$\leq C_{5} m^{-2\beta} |w^{m}|_{2}^{2} - C_{6} |w^{m}|_{2}^{2^{*}(s)}$$

for some $C_5, C_6 > 0$. Then there exists $C_7 > 0$ such that

$$\max_{t\geq 0} (C_5 m^{-2\beta} t^2 - C_6 t^{2^*(s)}) = C_7 m^{-2(N-s)\beta/(2-s)}.$$

Hence

$$J(w^m) \le Cm^{-2(N-s)\beta/(2-s)}.$$

From Claim 4 and the fact that $|\operatorname{supp}(u^m) \cap \operatorname{supp}(w^m)| = 0$, we deduce

$$J(v^m) = J(t_m u^m) + J(w^m)$$

$$\leq \frac{2-s}{2(N-s)} A_s^{(N-s)/(2-s)} + Cm^{-2(N-s)\beta/(2-s)} - Cm^{-(N+2)}.$$

By $0 \le \mu < \bar{\mu} - ((N+2)/N)^2$, we get

$$N+2 < N\beta < \frac{2(N-s)}{2-s}\beta.$$

Therefore,

$$J(v^m) < \frac{2-s}{2(N-s)} A_s^{(N-s)/(2-s)}$$

for m large enough. This contradicts (4.4) and the proof of Theorem 1.3 is completed.

References

- F. V. Atkinson, H. Brezis and L. A. Peletier, Nodal solutions of elliptic equations with critical Sobolev exponent, Journal of Differential Equations 85 (1990), 151-170.
- [2] D. Cao and S. Peng, A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, Journal of Differential Equations 193 (2003), 424-434.
- [3] F. Catrina and Z. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of external functions, Communications on Pure and Applied Mathematics 54 (2001), 229-257.
- [4] G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involing critical exponents, Journal of Functional Analysis 69 (1986), 289-306.
- [5] K. Chou and C. Chu, On the best constant for a weighted Sobolev-Hardy inequality, Journal of the London Mathematical Society 48 (1993), 137-151.
- [6] I. Ekeland and N. Ghoussoub, Selected new aspects of the calculus of variations in the large, Bulletin of the American Mathematical Society 39 (2002), 207–265.
- [7] A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, Journal of Differential Equations 177 (2001), 494– 522
- [8] J. P. Garcia Azorero and I. Peral. Alonso, Hardy inequalities and some critical elliptic and parabolic problems, Journal of Differential Equations 144 (1998), 441-476.

- [9] N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Transactions of the American Mathematical Society 352 (2000), 5703-5743.
- [10] E. Jannelli, The role played by space dimension in elliptic critical problems, Journal of Differential Equations 156 (1999), 407-426.
- [11] D. Kang and S. Peng, The existence of positive solutions and sign-changing solutions for elliptic equations with critical Sobolev-Hardy exponents, Applied Mathematics Letters 17 (2004), 411-416.
- [12] P. L. Lions, The concentration compactness principle in the calculus of variations, the locally compact case (I), Annales de l'Institut Henri Poincaré. Analyse Non Linéaire 1 (1984), 109–145.
- [13] P. L. Lions, The concentration compactness principle in the calculus of variations, the locally compact case (II), Annales de l'Institut Henri Poincaré. Analyse Non Linéaire 1 (1984), 223–283.
- [14] P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case (I), Revista Matemática Iberoamericana 1 (1) (1985), 145–201.
- [15] P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case (II), Revista Matemática Iberoamericana 1 (2) (1985), 45-121.
- [16] D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Preprint of Université Catholique de Louvain, Institut de Mathématique Pure et Appliquée, Chemin du Cyclotron 2, Belgium (2001).
- [17] G. Tarantello, Nodal solutions of semilinear elliptic equations with critical exponent, Differential and Integral Equations 5 (1992), 25-42.
- [18] S. Terracini, On positive solutions to a class of equations with a singular coefficient and critical exponent, Advances in Differential Equations 2 (1996), 241–264.